歡迎來到伟德 官网!

當前位置: 網站首頁 >> 師資隊伍 >> 碩士生導師 >> 正文
牛俊天
職稱:副教授學曆:工學博士
學科:能源與動力工程
研究領域或方向:1. CO2能源資源化利用; 2. 碳基能源(CH4)高效轉化
郵箱:juntianniu@163.com
  • 主講課程
  • 學術兼職
  • 學術論文
  • 主持項目
    《煤的清潔利用與污染防治》
    《可再生能源的利用》
    Fuel, Energy, International Journal of Hydrogen Energy, Environmental Science & Technology 等學術期刊審稿人
    [1]第一作者, Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle[J]. International Journal of Hydrogen Energy, 2023, 48: 19486–19493. (SCI中科院2區)
    [2]第一作者, Understanding the effect of Ni cluster size on methane activation and dehydrogenation[J]. International Journal of Hydrogen Energy, 2023, 48: 10903–10910. (SCI中科院2區)
    [3]第一作者, Effects of Pd doped Cu surface on CO2 and H2O formation in methane total oxidation[J]. Molecular Catalysis, 2023, 547: 113388. (SCI中科院2區)
    [4]第一作者, Unraveling the role of absorbed O/OH on methane total oxidation on Cusurface [J]. Chemical Physics Letters, 2023, 819: 140444. (SCI中科院3區)
    [5]第一作者, Enhanced performance of oxygen vacancies on the CO2 adsorption and activation over different phases of ZrO2[J]. Frontiers in Energy, 2023, 17: 545–554. (SCI中科院4區)
    [6]第一作者, Comprehensive review of Cu-based CO2 hydrogenation to CH3OH:Insights from experimental work and theoretical analysis[J]. International Journal of Hydrogen Energy, 2022, 47: 9183–9200. (SCI中科院2區, 入選ESI高被引 )
    [7]第一作者, A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C–H activation[J]. Frontiers of Chemical Science and Engineering, 2022, 16: 1485−1492. (SCI中科院3區)
    [8]第一作者, Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming[J]. ACS Catalysis, 2021, 11: 2398−2411. (SCI中科院1區,入選ESI高被引 )
    [9]第一作者, New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study[J]. Fuel, 2020, 266: 117143. (SCI中科院1區, 入選ESI高被引 )
    [10]第一作者, Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(111) and Pt(111)[J]. Applied Surface Science, 2020, 513: 145840. (SCI中科院2區)
    [11]第一作者, Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations[J]. International Journal of Hydrogen Energy, 2020, 45: 30267–30287. (SCI中科院2區)
    [12]第一作者, Identification of active sites in CO2 activation on MgO supported Ni cluster[J]. International Journal of Hydrogen Energy,2020, 45: 11108–11115. (SCI中科院2區)
    [13]第一作者, Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane[J]. Chemical Engineering Journal, 2019, 377: 119763. (SCI中科院1區, 入選ESI高被引 )
    [14]第一作者, Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study[J]. Molecular Catalysis, 2017, 434: 206−218. (SCI中科院2區)
    [15]第一作者, Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling[J]. Applied Surface Science, 2016, 376: 79−90. (SCI中科院2區)
    [16]第一作者, CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: A density functional theory study[J]. Journal of CO2 Utilization, 2016, 16: 431−441. (SCI中科院2區)
    [17]第一作者, Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel[J]. Applied Thermal Engineering, 2016, 95: 454−461. (SCI中科院2區)
    [18]第一作者, Mechanism of methylene oxidation on Pt catalysts: A DFT study[J]. Computational and Theoretical Chemistry, 2015, 1067: 40−47. (SCI中科院4區)
    [19]通訊作者, Unraveling the effect of particle size of active metals in Ni/MgO on methane activation and carbon growth mechanism[J]. Physical Chemistry Chemical Physics, 2024, 26: 1255–1266. (SCI中科院3區)
    [20]通訊作者,Effects of Cu ratios on the C1–C6 growthmechanism on copper–nickel bimetallic surfaces[J]. Physical Chemistry Chemical Physics, 2023, 25: 18322–18331. (SCI中科院3區)
    [21]通訊作者,Effect of low-nitrogen combustion system with flue gas circulation technology on the performance of NOx emission in waste-to-energy power plant[J].Chemical Engineering and Processing-Progress Intensification, 2022, 175: 108910. (SCI中科院3區)
    [22]通訊作者, Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: A DFT study[J].Molecular Catalysis, 2021, 502: 111360.(SCI中科院2區)
    [23]通訊作者, Comparative DFT study of carbon formation and removal mechanism on Rh modified Ni-based catalyst in the CH4/CO2 reforming[J].International Journal of Energy Research, 2021, 45: 10100–10111. (SCI中科院3區)
    [24]通訊作者, Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: From theoretical and experimental studies[J].Journal of Hazardous Materials, 2020, 397: 122646. (SCI中科院1區)
    [25]通訊作者, Effect of active site and charge transfer on methane dehydrogenation over different Co doped Ni surfaces by density functional theory[J].International Journal of Hydrogen Energy, 2020, 45: 31849–31862. (SCI中科院2區)
    1)國家自然科學基金青年項目:表界面調控優化CH4/CO2催化重整反應性能及作用機制研究(52106179),2022−2024,30萬,在研;
    2)山西省應用基礎研究計劃青年項目:Cu-Ni/ZrO2催化CH4-CO2重整中合金效應及載體作用協同調控反應性能研究(20210302124017),2022−2024,5萬,在研;
    3)山西省留學人員科技活動擇優資助項目:Cu基CO2加氫合成甲醇反應中MxOy作用機制研究(20230012),2023−2025,5萬,在研;
    4)山西省省籌資金資助回國留學人員科研項目:載體協同活性金屬Cu誘變CO2加氫合成甲醇強化機制研究(2023-065),2023−2026,6萬,在研;
    5)低品位能源利用技術及系統教育部重點實驗室開放課題研究基金項目:調控顆粒尺寸及界面結構強化甲烷幹重整反應性能研究(LLEUTS-202308),2023−2024,4萬,在研;
    6)中國博士後科學基金面上項目:基于金屬顆粒尺寸效應對CH4/CO2催化重整反應性能調控研究(2020M683241),2020−2021,8萬,已結題;
    7)重慶市自然科學基金面上項目:Ni基催化CH4-CO2重整反應中Rh改性對C–H與C=O活化機制及抗積碳能力調控(cstc2020jcyj-msxm1921),2020−2023,10萬,已結題;
    8)重慶市博士後科研特别資助項目:Cu/Co修飾Ni基催化CH4/CO2重整反應機理解析(XmT2019008),2019−2021,10萬,已結題。

.

地址:山西省太原市迎澤西大街79号
郵編:030024 電話:0351-6010031
郵箱:tyut_dlxy@163.com

Baidu
sogou